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Abstract 

Background:  Upland cotton provides the most natural fiber in the world. During fiber 
development, the quality and yield of fiber were influenced by gene transcription. 
Revealing sequence features related to transcription has a profound impact on cotton 
molecular breeding. We applied convolutional neural networks to predict gene expres-
sion status based on the sequences of gene transcription start regions. After that, a 
gradient-based interpretation and an N-adjusted kernel transformation were imple-
mented to extract sequence features contributing to transcription.

Results:  Our models had approximate 80% accuracies, and the area under the 
receiver operating characteristic curve reached over 0.85. Gradient-based interpreta-
tion revealed 5’ untranslated region contributed to gene transcription. Furthermore, 
6 DOF binding motifs and 4 transcription activator binding motifs were obtained by 
N-adjusted kernel-motif transformation from models in three developmental stages. 
Apart from 10 general motifs, 3 DOF5.1 genes were also detected. In silico analysis 
about these motifs’ binding proteins implied their potential functions in fiber for-
mation. Besides, we also found some novel motifs in plants as important sequence 
features for transcription.

Conclusions:  In conclusion, the N-adjusted kernel transformation method could inter-
pret convolutional neural networks and reveal important sequence features related to 
transcription during fiber development. Potential functions of motifs interpreted from 
convolutional neural networks could be validated by further wet-lab experiments and 
applied in cotton molecular breeding.
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Background
Upland cotton (Gossypium.hirustum.L) takes up about 90% of cotton cultivated over the 
world and is the main crop contributing to renewable textile fibers [1]. Fiber develop-
ment of upland cotton could be divided into four stages: initiation, elongation, secondary 
cell wall thickening (SCW), and maturity. Agronomic traits of fiber are mainly formed in 
the first three stages, and corresponding genes related to fiber formation are also tran-
scripted in these stages [2–4]. Genome assembly of upland cotton enables researchers 
to perform high throughput transcriptome analysis and fetch gene sequences efficiently 
[2–5]. Given that gene transcription is the base of phenotype formation and the genome 
sequences are the base of heredity, it’s of significant meanings to disclose transcription-
related sequence features for molecular breeding. In maize, convolutional neural net-
works (CNNs) were applied to the prediction of relative transcriptional abundance and 
roles of untranslated regions (UTR) in transcription were revealed [6]. The application 
of CNN in maize inspired us to utilize CNNs in upland cotton to detected sequence fea-
tures related to transcription.

CNNs have been applied to predict binding sites of transcription factors or RNA-
binding proteins [7–11]. For the binding sites prediction tasks, convolutional neural 
networks (CNN) showed good performance in accuracy. DeepBind used chromatin 
immunoprecipitation sequencing (CHIP-seq) and crosslinking-immunoprecipitation 
sequencing (CLIP) to predict binding sites of transcription factors and RNA binding 
proteins, respectively [11]. DeepSEA utilized CHIP-seq datasets, DNase I–hypersensi-
tive sites, and histone-mark profiles to identify binding sites of transcription factors and 
accessibility of chromatin [10]. In these models, input sequence was one-hot encoded 
as a 1-D sequence with 4 channels (A, T, C, G). The encoded sequences were dealt with 
models to get a binding score which presented the binding ability of the transcription 
factor. Successful applications of these models in protein-sequence binding prediction 
indicate that CNNs are suitable for dealing with genome sequences. Apart from the high 
accuracy reached by CNNs, the other advantage CNNs possess is the ability for motif 
detection, which could interpret models’ parameters into sequence features with biolog-
ical meanings [8].

Motif detection implemented by interpretation of CNNs has been tried in several 
types of research about a prediction of protein-sequence binding chromatin accessi-
bility [8, 10–12]. In these previous studies, filters in the first convolutional layer were 
supposed as motif scanners and selected for interpretation. Strategies for kernel trans-
formation in these studies are similar. Searching for activated regions of sequences is 
implemented. Subsequently, activated regions selected by several criteria were pooled 
together. Finally, sequences within activated regions were used to calculate a position 
weight matrix (PWM) through the cross-entropy method. PWMs are aligned to the 
database in JASPAR for known motifs detection, while unaligned PWMs will be detected 
as novel motifs [12]. In these model interpretation strategies, PWMs were generated 
from activated regions within sequences. Compared with other interpretation meth-
ods, such as DeepLIFT, SHAP, and saliency analysis which calculate significant scores 
for single nucleotide, model interpretation performed by generating PWMs could pro-
vide sequence features in the form of biological meanings [13–15]. Protein-DNA (RNA) 
binding prediction is required for recognizing binding sites from context sequences 
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and evaluating the effects of variants within binding sites, so generating PWMs from 
sequences is a reasonable interpretation strategy. But in the field of predicting transcrip-
tion status, we aim to detect motifs influencing transcription and have no demand for 
evaluation of variants within sequences, so we could apply another kernel-transformed 
strategy for interpretation of CNN models.

Input sequences of CNNs are one-hot encoded, which means parameters of kernels 
in the first convolutional layer represent for effects of channels (A, T, C, G) in activated 
regions, and the values of kernel parameters could be normalized into a PWM. However, 
in a trained model, final parameters are influenced by the initialization of model and the 
process of model training. To adjust bias result from parameter initialization and model 
training in kernel transformation, we proposed an N-adjusted kernel-transform method. 
Generally, apart from 4 types of nucleotides (A, T, C, G), N also exists within genomic 
sequences and these N characters are masked repeat elements or cryptic nucleotides in 
the genome [16]. In our opinion, these N characters provide little information for pre-
diction task, and if parameters of N channel are not equal to 0, we regard the value pos-
sessed by N as bias generated from model initialization and training.

We constructed CNNs with a single convolutional layer for it is competent for motif 
detection [12]. 10 motifs that potentially involve in fiber development were detected by 
N-adjusted kernel transformation and several novel sequence features were also inter-
preted from trained models. Adjusted N kernel-transformation, a strategy to interpret 
kernels directly into PWMs by N adjusted, could be applied in other prediction tasks 
implemented by CNNs. Sequence features detected in this study could be applied as 
sequence markers for gene selection in cotton molecular breeding. All the source code 
in this study is available at https://​github.​com/​LiuSh​ang-​777/​Singl​eCNN.

Results
Samples were classified into three clusters

To gain training data for CNN models, we implemented transcriptome sequencing 
on ovules and fiber from 11 time points. The reliability of our transcriptome data was 
validated by Pearson coefficient between three biological replicates and 33 tempo-
ral samples showed good reproducibility of transcriptome atlas (See Additional file 1). 
Interestingly, we found that these samples could be divided into three clusters accord-
ing to the heatmap. To classify gene expression patterns during fiber development, we 
applied the t-distributed stochastic neighbor embedding (t-SNE) method on transcrip-
tome data. The mean FPKM value of three biological replicates was calculated for t-SNE 
analysis and result of t-SNE could be viewed in an additional dot plot (See Additional 
file 2). Results of t-SNE suggested initiation, elongation, and SCW were covered in the 
transcriptome atlas. Samples from different developmental stages had various transcrip-
tional patterns, which indicated models should be built separately for three stages.

CNN predicted gene expression status accurately

Three kinds of CNN models with different parameters were built corresponding to initia-
tion, elongation, and SCW. Sequences and expression data were preprocessed according 
to Method. To gain models of high quality, we had applied 210 combined parameters (7 
for number of filters, 6 for kernel size and 5 for max-pooling size). Average accuracy on 

https://github.com/LiuShang-777/SingleCNN
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fivefold cross validation was used to evaluate performance of parameters and we selected 
models with different parameters for 3 stages (Table 1 and Additional files 3, 4, 5). To 
compare with models applied in maize, we constructed the previously reported model 
and trained it with our transcriptome data [6]. Accuracies and areas under the receiver 
operating characteristic curve (AUROC) were used to evaluate model performance. As 
shown in Fig. 1a, average accuracies of our models in initiation and elongation reached 

Table 1  Selected models for three stages

Parameters and mean accuracy of corresponding models in three developmental stages. These three selected models had 
highest mean accuracy compared with other combined parameters in each stage

Developmental stage Number of filters Kernel size Maxpooling size Average 
accuracy

Initiation 24 14 10 0.8

Elongation 32 22 10 0.8

SCW 24 16 10 0.78

Fig. 1  Accuracies and ROC curves of models with single convolutional layer and models in maize for three 
stages. a Accuracies of models in three stages, blue bars represent for accuracies of our models and orange 
bars represent for accuracies of models in maize. b ROC curve for our model and the model in maize for fiber 
initiation, X-axis is FPR (false positive rate) and Y-axis is TPR (true positive rate). Red line for model in maize and 
blue line for our model. c ROC curve for models in fiber elongation. d ROC curve for models in SCW
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about 80% having no significant divergence with models applied in maize (81% and 80% 
in initiation and elongation, respectively). However, models reported in maize had an 
extremely low accuracy (about 52%) in SCW and the average accuracy of models was 
70%. Our models in SCW had a higher average accuracy (about 78%) and no extremely 
low accuracy. Apart from average accuracy, AUROCs of models in 3 stages were also 
compared (Fig.  1b, c). 2 types of models had no significant divergence on AUROC in 
initiation and elongation. Our models had higher AUROC in SCW. Average accuracy 
and AUROC suggested models with a single convolution layer are still competent for the 
prediction of gene expression status. The high quality models we gained enabled us to 
perform model interpretation for important sequence features.

5′UTR is important for transcription

Aiming to interpret models with biological meanings, we applied a published package 
named DeepLIFT which was previously used in biology field to interpret the models [6, 
15, 17, 18]. We selected all true positive sequences (genes were correctly predicted as 
expressed) in three stages for interpretation. Figure 2 and Additional files 6 and 7 exhib-
ited the average effect of each loc on the input sequence for models of initiation. To dis-
play extreme effects on TSS, we masked upstream and downstream 10 nucleotides (nts) 
from TSS and visualized them in a seperate dot plot.

We found that A, T, and G on the TSS had negative effects on transcription. Inter-
estingly, a gene starting with trinucleotides ATG means it has no annotation for 5′UTR 
in the reference genome and these genes were always predicted by de novo prediction 
tools. Negative effects of ATG reflected that de novo predicted genes tended to have low 
transcription abundance or even be pseudogenes [19]. According to these results, we 
advised that in genome annotation, de novo prediction method should be substituted 

Fig. 2  Average effect of each loc in input sequences. Plot visualized effects of 991 input features except for 
upstream and downstream 10nts from transcription start site. Scatter under the effects plot visualized effects 
of upstream and downstream 10 nts
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by methods based on multi-samples transcriptome data. Apart from effects on TSS, we 
also found downstream sequences (from TSS) had higher effects than those of upstream 
sequence. Downstream 500 nts contained UTR region of genes. Therefore, we inferred 
that 5′UTR may play an important role in gene transcription. Notably, within 5′UTR, A 
and T had relatively higher effects than C and G, demonstrating nucleotide A and T had 
potential contributions to gene transcription. We had found important sequence region 
and compared contribution of 4 types of nucleotides for transcription, however, we could 
not interpret specific motifs from results of DeepLIFT. To find out motifs of biological 
meanings, a motif transformation method should be applied in model interpretation.

Kernel transformation detected transcription‑related motifs effectively

Kernels of CNN were regarded as motif scanners, these kernels could be transformed 
into motifs in the form of PWM [8]. We developed an adjusted kernel transforma-
tion method to transform kernels from CNN models into motifs. The description of 
this pipeline was displayed in Fig. 3. Patterns of all kernels in models were visualized 
in a set of additional files (See Additional files 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22). All the kernels were transformed into motifs in the form of PWM by 
N-adjusted kernel transformation described in Methods. We introduce N as cryptic 
nucleotides in reference to be an effect control for other 4 nucleotides. Visualiza-
tion of N’s effect order in all kernels showed that in several positions, the control 
effects were higher than those of normal nucleotides and these N present in refer-
ence genome should not be ignored in data preprocessing (Fig.  4a and Additional 
files 23, 24, 25). Our adjusted kernel transformation could adjust effects of 4 nucleo-
tides by introducing N as a control to generate motifs. These transformed motifs 
were aligned to the non-redundant plants motif database in JASPAR [20]. For each 
developmental stage, if aligned motifs from the motif database present in at least 
2 cross-validation models, they would be considered as common motifs, while, the 

Fig. 3  Pipeline to interpretate CNN models by adjusted kernel transformation. Kernels from CNN models will 
be transformed into PWM with N-regularized method. Transformed kernel will be aligned with known plant 
motifs to detect both annotated and de novo sequence features
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others were assigned as specific motifs. We obtained 12, 36 and 22 common motifs 
in initiation, elongation and SCW, respectively. 10 common motifs were shared by 3 
developmental stages and their distribution within sequences showed diverse pat-
terns in expressed and low expressed genes implying these motifs had crucial roles 
for transcription (Additional file  26, Fig.  4b, c). Details about aligned motifs were 
recorded in Additional file 27.

To compare validity of motifs interpreted by adjusted kernel transformation 
method and traditional motif enrichment method, we collected enriched motifs on 
expressed genes with the MEME, and the most significant 12, 36, and 22 motifs (cor-
responding to number of the common motifs) in initiation, elongation, and SCW, 
respectively (See Additional file 27) [21]. We re-predicted gene expression through 
support vector machine (SVM) based on motifs extracted by kernel transformation 
and motifs enriched by MEME. SVM models were evaluated in 4 aspects, accuracy, 
recall rate, precise rate, and f1 score. Performance of two kinds of SVM was com-
pared and visualized in Fig. 4d. The results showed motifs extracted by our kernel 
transformed method had similar effects as motifs obtained by the MEME illustrating 
that common motifs we gained had good reliability.

Fig. 4  Model interpretation results by N-adjusted kernel transformation. a Visualization for effects of N in 
model0 during initiation. Values annotated in the heatmap indicate the order of N sorted by effects of 5 
characters in sequences. 4 means N has the largest effect and 0 means effects of N is minimum among 5 
characters. b Distribution for 4 transcription activators detected from kernel transformation on expressed (red 
line) and low expressed genes (blue line). c Distribution for 6 DOF genes detected from kernel transformation 
on expressed (red line) and low expressed genes (blue line). d Comparison among features extracted by 
CNN interpretation and meme. Features extracted by two methods were input into SVM model to predict 
transcription status. SVM models were evaluated in accuracy, recall rate, precise rate and f1 score. Bars with 
shadows represent for SVM build on features extracted by MEME and bars without features represent for SVM 
build on features detected from CNN
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In silico analysis implied crucial role of detected motifs in transcription

Among 10 shared common motifs, 6 of them could be bound by DOF transcription 
factors, while the other 4 motifs could be bound by 4 transcription activators, includ-
ing 2 IDD5, NUC and JKD. 6 DOF genes were annotated as important factors involved 
in transcription. We built homologous models for 6 DOF factors in Arabidopsis and 
aligned them to the templates in SwissModel (See Additional file 28) [22]. According to 
alignment, second structures of 3 DOF factors (AT1G69570, AT2G28810, and OBP3) 
were similar to polymerase II subunit RPB9 implying these DOF factors may have a sim-
ilar function as subunits of polymerase II in transcription [23, 24]. In Arabidopsis, JKD is 
an activation factor regulating asymmetric cell division, epidermal-cell-type patterning 
and stem cell maintenance [25, 26]. Functions of JKD in Arabidopsis are about cell divi-
sion, elongation and cell wall formation indicating it may involve in initiation, elongation 
and SCW during fiber development, respectively. NUC was also reported as transcrip-
tion activator related to asymmetric cell division in Arabidopsis [25].

In common motifs which were not shared in three stages, we focused on DOF5.1 
(AT5G02460) from elongation because it regulated auxin transport in Arabidopsis 
which could affect fiber elongation [27]. We visualized homologous genes of DOF5.1 in 
upland cotton and found that they had relatively higher transcriptional abundance in the 
stage of fiber elongation (Fig. 5). We inferred that DOF5.1 in upland cotton could influ-
ence fiber elongation through regulating auxin transportation.

Novel motifs contribute to divergence between monocotyledon and dicotyledon

Apart from kernel-transformed motifs which were aligned to the motif database, there 
were still transformed motifs that could not aligned to the database and these motifs were 
assigned as de novo plant motifs. In each developmental stage, unaligned motifs were 
aligned to each other and a non-redundant de novo motif set was obtained after filtering 
aligned motifs. We scanned the upland cotton genome with non-redundant motifs to inves-
tigate distribution of these de novo motifs within genomic sequences. We found some of 
these de novo sequence features had different distribution patterns between two categories 
(expressed and low expressed genes) and we selected three of them from motifs detected 
during three developmental stages (Additional files 29, 30, 31). GO analysis of genes pos-
sessing these motifs indicated they were mainly involved in splicing, transportation, and 

Fig. 5  Heatmap of transcriptional abundance of DOF5.1 in upland cotton. Mean FPKM on each timepoint 
was calculated based on 3 replicates and log2 (FPKM + 1) was used for heatmap visualization
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localization of nucleic acids (Additional files 32, 33, 34). The essential biological preproc-
esses were enriched in genes with de novo motifs and this indicated de novo motifs we 
detect may play important roles in development of plants.

Discussion
In this study, we applied CNNs to detect sequence features crucial for transcription during 
fiber development. Subsequently, we interpreted the models and extracted related sequence 
features involving transcription. Our CNNs had only one convolutional layer due to avaibil-
ity for interpretation and reduction of model complexities [12]. Compared with models in 
maize, accuracies and AUROCs in three stages illustrated CNNs with single convolutional 
layer was competent for task of transcription status prediction [6].

Here, we took a direct kernel-transformation strategy different from those applied in 
protein-DNA (RNA) binding prediction [7–12]. The core of predicting binding sites is to 
recognize a limited number of binding sites from context sequences. Given that, it is impor-
tant to ensure kernels had no or lower activated values in context regions. What’s more, to 
evaluate about variants within binding sites, generating PWMs from sequences contain-
ing variants within activated regions is necessary. However, in prediction of expression sta-
tus, nucleotides possessing significant positive scores take a high ratio on input sequence 
according to results of DeepLift and it’s inappropriate to generate PWMs from larger 
activated regions. As first convolutional layer of CNN was regarded as motif scanner, we 
normalized parameters of kernels into PWMs by N-adjusted kernel transformation. The 
visualization of N in kernels showed that nucleotides which should contribute little infor-
mation for prediction could have higher effects compared with A, T, C, and G. Therefore, 
it will introduce bias to ignore character N in sequences and effects of 4 normal types of 
nucleotides in kernel transformation should be adjusted by effects of N. Functions of motif-
binding proteins we gained by N-adjusted kernel transformation are about asymmetric cell 
division, auxin transport and transcription activation. Meanwhile, genes possessing novel 
motifs were enriched in GO terms about transportation, localization and splicing of nucleic 
acids which are essential for transcription. Both results indicate that we have detected 
potential motifs involving in transcription during fiber development.

In this study, we also found 5′UTR play important role in gene transcription which is cor-
responding to previous study and the role of 5′UTR in plant [28]. However, we found A 
and T had more contributions for transcription, while C and G were more important in 
maize. These divergent results may be caused by the limited sample size used in maize (high 
expressed gene and pseudogenes). During transcription, the unwinding of the DNA dou-
ble helix is an essential step in which hydrogen bonds between nucleotides pair would be 
broken. A-T pairs possessing two hydrogen bonds are easier to be broken than C-G pairs 
having three hydrogen bonds. Therefore, genes with AT enriched 5′UTR need less energy 
to start transcription. We inferred high AT ratio within 5′UTR is a sequence feature of 
expressed genes.

Conclusion
In summary, CNN with a single convolutional layer has reliable performance on the 
prediction of gene expression status. N-adjusted kernel transformation could extract 
important sequence features underlying sequences. Motif-binding proteins could be 
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functionally validated by further wet-lab experiments and N-adjusted kernel transfor-
mation could be applied broadly in other crops to figure out crucial sequence features 
prompting molecular breeding.

Methods
Transcriptome sequencing and profiling

Plant materials preparation

The tetraploid upland cotton Texas Marker 1 (TM-1) was grown in the field belong to 
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, located in 
Anyang, Henan province. Ovules were collected on 3  days before anthesis (-3 DPA), 
1 day before anthesis (-1 DPA), anthesis (0 DPA), 1 day post-anthesis (1 DPA), 3 days 
post-anthesis (3 DPA), and 5 days post-anthesis (5 DPA). Fibers were collected on 7 days 
post-anthesis (7 DPA), 10  days post-anthesis (10 DPA), 15  days of anthesis (15 DPA), 
20 days post-anthesis (20 DPA), and 30 days post-anthesis (30 DPA). Each timepoint has 
3 biological replicates. All collected samples were frozen in liquid nitrogen as soon as 
they were separated from the plants and stored in a − 80 °C environment.

Library construction and RNA‑sequencing

A total amount of 1 µg RNA per sample was used as input material for the RNA sample 
preparations. Sequencing libraries were generated using NEBNext® Ultra™ RNA Library 
Prep Kit for Illumina® (NEB, USA). mRNA was purified from total RNA using poly-T 
oligo-attached magnetic beads. Fragmentation was carried out in NEBNext First Strand 
Synthesis Reaction Buffer (5X). As long as short cDNA fragments were purified, they 
were extended with nucleotide adenines. After adenylation of 3′ ends of DNA fragments, 
adapters ligation, size selection and PCR amplification were performed for the prepare 
of sequencing. RNA-seq were carried out by Illumina comprehensive next-generation 
sequencing technique.

Transcriptome sequences profiling

Quality control of the raw data was carried out by FastQC using default parameters (ver-
sion 0.11.5). After quality control of the raw data, clean reads were aligned to the refer-
ence genome (https://​cotto​nfgd.​org/​about/​downl​oad/​assem​bly/​genome.​Ghir.​HAU.​fa.​
gz) by HISAT2 (version 2.1.0) [29]. The uniquely mapped reads were subjected to string-
tie (version 1.3.6) to quantify the gene abundance [30]. FPKM value of all genes during 
fiber development was provided in our GitHub repository (https://​github.​com/​LiuSh​
ang-​777/​Singl​eCNN/​all_​fpkm.​txt.)

Input data preprocessing

To check consistence of three biological replicates, we calculated Pearson coefficients 
among samples by pandas (version 0.23.4) and visualized Pearson coefficients in heat-
map through seaborn (version 0.9.0). Classification of samples was performed by the 
t-SNE package in R language [31]. Input sequences were labeled according to tran-
scription abundance and the threshold of FPKM value is set as 1. Gene was labeled as 
expressed status if it’s FPKM larger than 1, while, it was labeled as low expressed status. 
In the same stage, genes having conflict transcription status among different timepoints 

https://cottonfgd.org/about/download/assembly/genome.Ghir.HAU.fa.gz
https://cottonfgd.org/about/download/assembly/genome.Ghir.HAU.fa.gz
https://github.com/LiuShang-777/SingleCNN/all_fpkm.txt
https://github.com/LiuShang-777/SingleCNN/all_fpkm.txt
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were trimmed. 500 nts flank the TSS were extracted as input sequences with length of 
1000. These input sequences were one-hot encoded, including 4 nucleotides (A, T, C, G) 
and N. All input sequences we used in this study were stored in our GitHub repository 
(https://​github.​com/​LiuSh​ang-​777/​Singl​eCNN/) and the file names were init_utr5.zip, 
elong_utr5.zip, and scw_utr5.zip, respectively.

Model building and training

Convolutional neural networks which contained one convolution layer and one fully 
connected layer were built by TensorFlow (version 2.0.0). The structure of models con-
sists of 1 convolutional layer, 1 max-pooling layer, 1 dropout layer, and 2 fully connected 
layers. The last fully connected layer is to make a softmax classification. The loss func-
tion in CNN models is binary cross-entropy. More specific parameters about model 
structure were recorded in our Github repository (https://​github.​com/​LiuSh​ang-​777/​
single_​cnn/​blob/​main/​01para_​test.​sh).

We took a fivefold cross-validation strategy to train our convolutional neural net-
work. 20% of input genes were selected as test data, and 4000 of the rest 80% genes were 
selected as validation set, while, the others were used to train the convolutional neural 
network. Accuracy and the area under the receiver operating characteristic curve were 
calculated to assess model performance. (https://​github.​com/​LiuSh​ang-​777/​single_​cnn/​
blob/​main/​02mod​el_​evalu​ate.​py).

Model interpretation

All true positive sequences were selected for model interpretation. Normal interpreta-
tion was implemented by DeepLIFT (https://​github.​com/​kunda​jelab/​deepl​ift) [15]. For 
N-adjusted kernel transformation, we proposed several symbols to denote it. The origi-
nal kernel parameter is a matrix with a 5 × L shape, and L represents for length of ker-
nel. We denoted Oij as the value in the original kernel matrix. For i and j, i ∈ {0,1,2,3,4} 
corresponding five nucleotides A, T, C, G, N, and j ∈ {0, 1, 2, …, L}, represent for L length 
kernels in CNN. we regularized original parameters by the effects of cryptic nucleotides. 
Rij is regularized probability in final transformed PWM, Rij =  max(0,Oij−O4j)

∑
i=4
i=0 max(0,Oij−O4j)

 , i ∈ {0, 1, 

2, 3}, j ∈ {0, 1, 2, …, L}. If 4 types of nucleotides were all transformed into 0, then 0.25 will 
be set for 4 nucleotides indicating no nucleotide preference in such position. Regular-
ized kernels could be recorded as PWM file and transformed into MEME-recognized 
motif file by the chen2meme package in MEME [21]. Scripts about model interpretation 
was stored at https://​github.​com/​LiuSh​ang-​777/​single_​cnn/​blob/​main/​04mot​if_​trans.​sh

Construction of support vector machine

Support vector machine (SVM) model was built on sklearn package (version 0.19.2), 
the kernel function we used is rbf. (https://​github.​com/​LiuSh​ang-​777/​single_​cnn/​blob/​
main/​SVM.​py). Features of SVM model are motifs, and the number of motifs possessed 
by sequences was calculated from fimo results (threshold of q value was set to 0.1). Fea-
tures detected from CNNs and MEME were used to re-predict expression status by 
SVM. Evaluation of SVM model consisted of four aspects, accuracy, precise rate, recall 
rate, and f1 score.

https://github.com/LiuShang-777/SingleCNN/
https://github.com/LiuShang-777/single_cnn/blob/main/01para_test.sh
https://github.com/LiuShang-777/single_cnn/blob/main/01para_test.sh
https://github.com/LiuShang-777/single_cnn/blob/main/02model_evaluate.py
https://github.com/LiuShang-777/single_cnn/blob/main/02model_evaluate.py
https://github.com/kundajelab/deeplift
https://github.com/LiuShang-777/single_cnn/blob/main/04motif_trans.sh
https://github.com/LiuShang-777/single_cnn/blob/main/SVM.py
https://github.com/LiuShang-777/single_cnn/blob/main/SVM.py


Page 12 of 15Liu et al. BMC Bioinformatics           (2022) 23:91 

Motif alignment and distribution scanning

Transformed kernels could be aligned to the JASPAR database through tomtom in 
MEME (v5.1.1). The motif database was downloaded from MEME (https://​meme-​
suite.​org/​meme/​meme-​softw​are/​Datab​ases/​motifs/​motif_​datab​ases.​12.​21.​tgz). We 
set 0.05 as the q-value threshold in tomtom for detection of known motifs. How-
ever, q-value was set to 0.1 in tomtom for generation of non-redundant novel motifs. 
Aligned motifs were scanned along sequences without the reverse complementary 
strand by the fimo in MEME [21]. Scripts to perform motif alignment were stored 
at https://​github.​com/​LiuSh​ang-​777/​single_​cnn/​blob/​main/​05mot​if_​align.​sh and 
https://​github.​com/​LiuSh​ang-​777/​single_​cnn/​blob/​main/​07mot​if_​unali​gn.​sh.

GO enrichment analysis

GO enrichment analyses were performed by R package clusterprofile [32]. GO data-
base was constructed by eggNOG-mapper (http://​eggno​g5.​embl.​de/). 30 enriched 
GO terms in with minimum q value were selected for visualization.

Abbreviations
SCW: Secondary cell wall thickening; CNN: Convolutional neural network; TSS: Transcription start site; UTR​: Untrans-
lated region; AUROC: Area under the receiver operating characteristic curve; PWM: Position weight matrix; DPA: Day 
post-anthesis; nt: Nucleotides; FPKM: Fragments Per Kilobase of exon model per Million mapped fragments; CHIP-seq: 
Chromatin immunoprecipitation sequencing; CLIP: UV-crosslinked immunoprecipitation; GO: Gene ontology; SVM: Sup-
port vector machine.
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